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Abstract The Fluctuation Relation for a stationary state, kept at constant energy by a deter-
ministic thermostat—the Gallavotti–Cohen Theorem—relies on the ergodic properties of the
system considered. We show that when perturbed by an energy-conserving random noise,
the relation follows trivially for any system at finite noise amplitude. The time needed to
achieve stationarity may stay finite as the noise tends to zero, or it may diverge. In the for-
mer case the Gallavotti–Cohen result is recovered, while in the latter case, the crossover
time may be computed from the action of ‘instanton’ orbits that bridge attractors and re-
pellors. We suggest that the ‘Chaotic Hypothesis’ of Gallavotti, Cohen and Ruelle can thus
be reformulated as a matter of stochastic stability of the measure in trajectory space. In this
form this hypothesis may be directly tested.

1 Introduction

The Fluctuation Theorems are relations satisfied by the distribution of entropy production
σ̄τ = 1

τ

∫ τ

o
dtσ (t) [1–9]

P (σ̄τ )

P (−σ̄τ )
∼ eτσ̄τ or 〈e−λτ σ̄τ 〉 = 〈e−(1−λ)τ σ̄τ 〉 ∀λ. (1.1)

They hold in a series of different settings. The proofs are very simple and general when they
apply to systems starting from an equilibrium configuration [2], or in contact with a thermal
bath involving stochastic noise that guarantees ergodicity [10, 11]. On the contrary, when
the system is treated in the stationary state achieved thanks to a deterministic thermostat,
the derivation is not simple and requires a knowledge of the ergodic properties that is very
rarely accessible analytically [3, 4, 13].

In those cases in which the nature of the thermostat is thought to be physically irrelevant,
it is quite natural to prefer the stochastic baths because they invoke the least hypotheses,
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making the analysis conceptually simpler. On the other hand, the very fact that for determin-
istic systems the Fluctuation Relation is not automatically satisfied makes it an interesting
tool to study questions of ergodic theory that are still largely open.

For a purely deterministic case, a forced system converges to an ‘attractor’ set, while
the time-reversed dynamics converges to a ‘repellor’ set. Loosely speaking, the Gallavotti–
Cohen theorem is then based on two types of hypotheses: (i) that the attractor is sufficiently
chaotic, and (ii) that the attractor and repellor are interwoven fractals with sufficiently over-
lapping closures. As the forcing is increased, attractor and repellor tend to separate, and
even if the attractor remains chaotic the Fluctuation Relation no longer holds in general.1

For macroscopic systems at reasonable levels of forcing, one can assume that the hypotheses
above are effectively (if not always strictly) satisfied, leading to the Chaotic Hypothesis [15].

In this paper we recast the content of the previous paragraph in the language of stochastic
stability [16–18]: we first show that adding a small, energy-conserving noise the Fluctuation
Relation is trivially satisfied by any model, and we then analyze the limit of noise going
to zero. Indeed, all the subtleties of the Gallavotti–Cohen theorem and of the Chaotic Hy-
pothesis are a result of this limit. The small noise limit has moreover the advantage that
an approximation scheme (analogous to the semiclassical treatment) becomes exact, so that
one can analyze it in detail.

The analysis of this paper suggests the following alternative Chaotic Hypothesis: The
large deviation function of macroscopic observables can be regarded as stochastically sta-
ble. Apart from its conceptual appeal, this formulation has the advantage of being easily
testable numerically.

2 Thermostatted Dynamics

We shall consider Hamilton’s equations with forcing, a thermostatting mechanism, and en-
ergy conserving noise [19–22]:

q̇i = pi,

ṗi = −∂V (q)

∂qi

+ gij ηj − fi(q) + γ (t)pi = −∂V (q)

∂qi

+ gij (ηj − fj )
(2.2)

here and in what follows we assume summation convention.

• ηj are white, independent noises of variance ε.
• gij = δij − pipj

p2 is the projector onto the space tangential to the energy surface.
• fi(q) is a forcing term that depends on the coordinates only.
• γ (t) = f•p

p2 . Multiplying the first of (2.2) by ∂V (q)

∂qi
, the second by pi and adding, one

concludes that energy is conserved.
• The product gijηj is rather ill defined because both terms depend on time and ηj is dis-

continuous. The ambiguity is raised by stipulating that it has to be interpreted in the
Stratonovitch convention [23], the meaning of which will be made clear below.

The probability evolves through [23]:

Ṗ = −HP (2.3)

1And then the only hope is that the attractor itself is composed of two intertwined sets, related by some
discrete symmetry playing for them the role played by time-reversal for the attractor-repellor pair. See [14].
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where H is the operator:

H = pi

∂

∂qi

− ∂V (q)

∂qi

∂

∂pi

+ ∂

∂pi

[γpi] − ∂

∂pi

fi − ε
∂

∂pj

gij gil

∂

∂pl

. (2.4)

The precise factor ordering in the last term is exactly what we meant by (2.2) being in the
‘Stratonovitch convention’. In the absence of driving f = 0 it is easy to check that H anni-
hilates any function that depends on the phase-space coordinates only through the energy

E = p2

2 + V . Hence, the noise respects the microcanonical measure, in that case.
We shall consider as usual the ‘time-reversal transformation’ H̃ = [QHQ−1]†, where

Q is the operator that reverses momenta: QpiQ
−1 = −pi and Q ∂

∂pi
Q−1 = − ∂

∂pi
. Under

momentum reversal all terms change signs, except the last. Under Hermitean conjugation
the factor order is reversed, and derivatives change sign. We get:

H̃ = [QHQ−1]† = H + σ,

σ ≡ [γpi] ∂

∂pi

− ∂

∂pi

[γpi] = −(d − 1)γ
(2.5)

with 2d is the dimension of phase-space, which can be checked by straightforward calcula-
tion. We hence have:

[QHQ−1]† = H + σ, (2.6)

[Q(H + λσ)Q−1]† = H + (1 − λ)σ (2.7)

because the entropy production rate σ changes sign under time-reversal and conjugation.
From here it is standard to show that for every finite value of ε the fluctuation theo-

rem holds [10, 11]. For completeness, let us outline the proof: given any initial and final
configurations xi = (qi,pi) and xf = (qf ,pf ) the expectation of the total work is

〈e−λ
∫ τ
o σdt 〉 = 〈xf |e−τ(H+λσ)|xi〉 = 〈xi |e−τ(H+λσ)† |xf 〉

= 〈xi |Q−1e−τ(H+(1−λ)σ)Q|xf 〉. (2.8)

Because of the noise, the evolution is ergodic on the energy surface,2 and thus the real part
of the spectrum of H restricted to functions on the energy surface has a gap. Evaluating (2.8)
on a basis of eigenfunctions on the energy surface, the ‘lowest’ right and left eigenfunctions
(the ones with the eigenvector μo(λ) having the lowest real part) 〈Lo| and |Ro〉 dominate:

〈xf |e−T (H+λτσ)|xi〉 ∼ 〈xf |Ro〉〈Lo|xi〉e−τμo(λ)

= 〈xf |Lo〉〈Ro|xi〉e−τμo(1−λ) (2.9)

and using the fact that H + λσ and H + (1 − λ)σ have the same spectrum, we conclude
that:

lim
τ→∞

{
1

τ
ln〈e−λ

∫ T
o σdt 〉 − 1

τ
ln〈e−(1−λ)

∫ T
o σdt 〉

}

= 0 (2.10)

2In fact, when only half of the equations are noisy, there are some (rather atypical) counterexamples to ergod-
icity. One can always resort to stochastic equations with noise both on coordinate and momentum equations,
see [12].
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which is the Laplace transformed version of the Fluctuation Theorem (1.1). Clearly, the
whole argument breaks down at strictly zero noise, when the eigenfunctions on the energy
surface are no longer smooth, and the overlaps 〈Lo|xf 〉 and 〈Ro|xi〉 may vanish. The prob-
lems thus may (and will) arise because we have proven the theorem for

lim
ε→0

lim
τ→∞

1

τ
lnP

(∫ τ

o

dtσ

)

(2.11)

and the Gallavotti–Cohen theorem is for:

lim
τ→∞ lim

ε→0

1

τ
lnP

(∫ τ

o

dtσ

)

. (2.12)

In what follows, we shall analyze the small-noise limit, starting from a simple example.

3 A Simple Example

Consider a particle on a two-dimensional space with toroidal boundary conditions, a con-
stant field E along the direction 1, and an isokinetic thermostat. The example was discussed
in Ref. [13]. We write the velocity vector (px,py) as:

px = p cos θ; py = p sin θ. (3.13)

There are two stationary situations: parallel velocity (px,py) = (p,0), θ = 0 (stable: the
attractor) and antiparallel velocity (px,py) = (−p,0), θ = π (unstable: the repellor). Equa-
tion (2.2) reads, in this case:

ṗx = E − Ep2
x

p2
+ ηx − px

pxηx + pyηy

p2
,

ṗy = −Epxpy

p2
+ ηy − py

pxηx + pyηy

p2
.

(3.14)

In terms of θ both equations collapse into a single one:

θ̇ = −E sin θ + ηθ = − d

dθ
[−E cos θ ] + ηθ (3.15)

where we have defined the angular, isotropic noise: ηθ ≡ sin θηx − cos θηy , a white noise
whose variance is ε. The entropy production rate is σ = E cos θ .

3.1 Weak Noise Limit

Equation (3.15) can be interpreted as a Langevin process in an effective potential V =
−E cos θ , see Fig. 1. The probability evolves according to:

Ṗ = −
[

ε
∂2

∂θ2
+ E

∂

∂θ
sin θ

]

P = −HFP P. (3.16)

If we are interested in calculating the average e−λ
∫

σdt in the large-time limit we need to
compute the lowest eigenvalue of

Hλ = HFP + λE cos θ (3.17)
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Fig. 1 Top: potential in terms of
angle. Bottom: effective potential
associated with the Shroedinger
problem (3.18). A is the
subdominant bias proportional to
(λ − 1/2) that favors attractor
(A > 0), or repellor (A < 0)

which can be taken as usual to the Hermitian form

Hh
λ = eεE sin θHλe

−εE sin θ = 1

ε

[

−ε2 ∂2

∂θ2
+ E

4
sin2 θ + εE

(

λ − 1

2

)

cos θ

]

(3.18)

and takes the form of a Shroedinger operator in an effective potential Veff = E
4 sin2 θ +

ε(λ − 1
2 )E cos θ depicted in Fig. 1. The average work per unit time at long times is given

by the lowest eigenvalue of (3.18). The Gallavotti–Cohen symmetry is manifest making
(λ − 1/2) → −(λ − 1/2) and θ → π − θ .

Now, in the limit of small ε the situation is as follows: to leading order in ε the ground
state is doubly degenerate, the eigenfunctions being concentrated in θ = 0 and θ = π , re-
spectively – both attractor and repellor are selected by the potential Veff at this order (ε−1). It
is the next-to-leading order A = (2λ − 1)E cos θ in Veff (see Fig. 1) that lifts the degeneracy
by a quantity of O(1) in ε, thus selecting attractor or repellor, depending on the sign of
(λ − 1/2). Clearly, if (λ − 1/2) is of order one, for small ε the ground state eigenfunction is
peaked in only one well, which one depends on the sign of (λ − 1/2), and:

〈e−λτ σ̄τ 〉 ∼ eτ(|λ−1/2|−1/2)E (3.19)

where the last term 1/2 comes from the zero-point energy of the minimum.

3.2 Attractor, Repellor and Time-Reversal

Let us try now a more direct approach (the techniques can be found in [24]). We can write
an expression for the probability of a trajectory in configuration space:

P (traj) = e− 1
ε

∫
dt[ 1

4 (θ̇+E sin θ)2− 1
2 Eε cos θ] (3.20)
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and we wish to calculate the average

〈e−λσ 〉 =
∫

traj
P (traj)e−λ

∫
dt cos θ =

∫

traj
e− 1

ε

∫
dt[ 1

4 (θ̇+E sin θ)2+(λ− 1
2 )Eε cos θ]. (3.21)

The trajectory weight in (3.21) is composed of two terms, the leading term corresponding to
the Lagrangian:

L = 1

4
(θ̇ + E sin θ)2 = 1

4
θ̇2 + 1

4
E2 sin2 θ − 1

2
E

d cos θ

dt
(3.22)

and a subleading term proportional to (λ − 1/2). The dominant terms must satisfy La-
grange’s equations derived from (3.22): these correspond to a problem with inertia in the
inverted potential −Veff. The solutions are:

θ̇ = ±
√

4E + E2 sin2 θ (3.23)

where E is a constant playing the role of an energy associated with the Lagrangian (3.22).
It is easy to see that the integral in the exponent (3.20) (the action) can only be finite for
large times if the trajectory spends most of the time in attractor or repellor, and this is only
possible if E = 0. We thus have that solutions are either solutions of the original noiseless
problem:

θ̇ = −E sin θ = − d

dθ
[−E cos θ ] (3.24)

which converge to the attractor and have zero action, or ‘rare’:

θ̇ = E sin θ = d

dθ
[−E cos θ ] (3.25)

taking from attractor to repellor, and these have a finite action equal to E
∫

dθθ̇ sin θ = 2E.
The general trajectory selected by the first term of (3.21) is composed of sejours in the
attractor and in the repellor, with rapid descents from repellor to attractor (all three with
zero action), plus the ‘instanton’ trajectories with action 2E, see Fig. 2.

An important point to note is that the trajectories associated with the Lagrangian (3.22) in
the noiseless limit are, as we have mentioned, many more than the trajectories of the original
dynamic system in the absence of noise—they include all the non-zero action solutions. Also
very important is the fact that the dynamics associated with (3.22) differs from the original

Fig. 2 An ‘instanton’–
‘antiinstanton’ gas configuration.
The average time spent in the
attractor and repellor determines
the entropy production
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dynamics in that the original stable point θ = 0 is now unstable, due the reversal of the
potential. These questions will be relevant in the following sections.

The exact proportion of time spent in attractor τattractor and repellor τrepellor will be de-
termined by the second, subdominant term. This term then gives an action ∼εE(λ −
1/2)(τrepellor − τattractor). The dominant contribution for the λ-dependent average is given
for large times τ by the trajectories that maximize

− lnP (traj) ∼ −ε(λ − 1/2)(τrepellor − τattractor) + Ninstanton�/ε (3.26)

where Ninstanton is the number of climbings from attractor to repellor. If λ = 0 the system is
unbiased and it will prefer to stay in the attractor. If, on the contrary, we wish to compute
the large-deviation function with λ 	= 0, then the trajectories that dominate will share time
in attractor and repellor, so that:

(τrepellor + τattractor)σ̄τ = τrepellorσ̄repellor + τattractorσ̄attractor = (τattractor − τrepellor)E. (3.27)

For the probability of work per unit time σ̄ , at small noise level, we get a linear profile as in
Fig. 3 which is in agreement with (3.19).

For infinite times the last term in (3.26) is negligible, but for times such that instanton
configurations weigh comparably to the terms proportional to time: �/ε ∼ ln τ and we
shall not see reversals. There are then two possibilities: we may consider a set of initial
conditions corresponding to an equilibrium configuration, and get the correct proportion
of sejour in attractor and repellor without needing to perform any activated jumps from
attractor to repellor. This is the transient fluctuation theorem, which holds for zero noise. On
the other hand, if we consider any other initial configuration, we need jumps from attractors
to repellor and back in order to obtain the right proportion of sejours in the large time limit.
Clearly, this second ‘stationary’ fluctuation theorem needs ln τ 
 �/ε.

Let us note the close analogy to a one-dimensional Ising model [14] E = −J
∑

i sisi+1 −
h

∑
si with βJ → exp(�/ε) the wall energy (where � is the instanton action), and βh →

ε(λ − 1/2). Although in our case ‘climbing’ walls cost, and ‘descending’ ones do not, the
difference is unimportant because the number of instantons and of antiinstantons differ by
at most one. Here ε enters in the length needed to accommodate many walls, which is
necessary in the thermodynamic (large-length) limit. The alternative is to consider a properly
weighted set of boundary conditions, so that no walls are necessary: this is analogous to the
transient fluctuation theorem.

Fig. 3 lnP(σ) vs. σ for the
problem of Sect. 2. The profile is
linear, and can be seen as the
coexistence curve of two phases
with free-energy ±E
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4 Small Noise Limit, General

We shall now show that the structure of the previous section is quite general, although
there are many instanton-antiinstanton trajectories. Consider the evolution equations (2.3)
and (2.4). We write this as a path integral

P (q,p) =
∫

[paths]
e− �path

ε =
∫

[paths]
e− 1

ε

∫
dt (L(q,p)− ε

2 σ) (4.28)

where the paths have the appropriate initial condition in phase-space, and all possible final
configurations.

L = q̂i (q̇i − pi) + p̂i(ṗi + Vi + gijfj ) + gij p̂j gil p̂l

= q̂i q̇i + p̂i ṗi − H (4.29)

with

H = q̂ipi − p̂igij fj − p̂iVi − gij p̂j gil p̂l . (4.30)

Here and in what follows we use the notation Vi = ∂V
∂qi

. The second, subdominant term in
the exponent comes from the symmetrization (cf. the second of (2.5)):

∂

∂pi

(γpi) = 1

2

[
∂

∂pi

(γpi) + (γpi)
∂

∂pi

]

− σ

2
(4.31)

where again σ = −(d − 1)γ .
We wish to calculate the large-deviation function

〈eλ
∫ τ
o dtσ 〉 =

∫

[paths]
e− 1

ε

∫
dt[L(q,p)+ε(λ− 1

2 )σ ]. (4.32)

Just as in the previous section, in the limit of small noise we have to look for saddle-point
solutions only taking into account the first term in the exponent. The equations of motion
then read:

˙̂qi = −∂H

∂qi

= p̂lglr

∂fr

∂qi

+ p̂l

∂Vl

∂qi

,

˙̂pi = −∂H

∂pi

= −q̂i − [p̂lfj + p̂l p̂j ]∂glj

∂pi

,

q̇i = ∂H

∂q̂i

= pi,

ṗi = ∂H

∂p̂i

= −gij (fj + 2p̂j ) − Vi.

(4.33)

Equations (4.33) are Hamilton’s equations, and they involve twice as many degrees of
freedom as the original system. In fact, the original phase space variables (qi,pi) have
now become the coordinates, and their conjugate momenta are the new variables (q̂i , p̂i).
Multiplying the third equation by Vi , the fourth by pi and adding, we conclude that all
the solutions in the extended phase-space of (4.33) are still thermostatted to

∑
p2

i + V =
constant.
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Let us now rewrite the action in Lagrangian form. We first put p̂igij fj = p̂lgligij fj where
we have used gligij = glj . Next, we separate tangential and normal parts of p̂i ṗi = p̂lgli ṗi +
p̂lplṗipi/p

2. We can complete squares and collect the terms, to get the Lagrangian:

L = q̂i (q̇i − pi) − 1

4
[ṗi + gijfj + Vi]2

+
[

1

2
(ṗi + gijfj + Vi) + gij p̂j

]2

+ p̂lpl

p2
(ṗipi + piVi). (4.34)

Using the last two equations of motion (4.33), we see that at the saddle point level the last
two terms cancel. We hence conclude that the action to leading order equals

� =
∫

dtL̃(q̈, q̇,q) =
∫

dt[q̈i + gijfj + Vj ]2 (4.35)

where we have substituted pi = q̇i everywhere in L̃. Note that L̃ has an unusual second time
derivative q̈i . All relevant trajectories are the saddle points of the action (4.35):

d2

dt2

∂L̃

∂q̈i

− d

dt

∂L̃

∂q̇i

+ ∂L̃

∂qi

= 0. (4.36)

The solutions are determined by initial and final values of both qi and q̇i . In particular,
trajectories of the original system without noise are the ones having zero action:

q̈i + gijfj + Vi = 0. (4.37)

Furthermore, in order that the action be finite, we must have that q̈i + gijfj + Vi → 0 for
large t . As an example, in the next section we shall construct the solutions of (4.36) for the
Lorentz gas.

In a completely chaotic system, we can construct an expansion in terms of (iso-
lated) trajectories [25–29], and just as before these will commute between attractor(s) and
repellor(s)—defined as dynamically stable and unstable solutions of the equations of motion
of the original system—where they will spend essentially all the time, since otherwise their
action would be infinite. Because the only difference between attractors and repellors is, by
definition, their stability, the next-to-leading contribution in the action

�ε =
(

λ − 1

2

)∫
dtσ + 1

2

∫
dtdt ′

δ2L̃

δqi(t)δqj (t ′)
|trajδqi(t)δqj (t

′) (4.38)

will decide the length of the sejours in each for each λ.
In this setting, a necessary condition for the Gallavotti–Cohen theorem (i.e. the Fluctua-

tion relation at zero noise) to hold, is that there be orbits with zero action bridging attractor
and repellor.

4.1 Variational Solutions: the Zero-Action Situation

Given a point on the attractor (qa,pa = q̇a) and a point on the repellor (qr ,pr = q̇r ) and
two times ti and tf we can obtain the solution going from (qa, q̇a) at ti to (qr , q̇r ) at tf
as follows. Starting from any curve (q(t), q̇(t)), contained within the energy surface and
having the correct endpoints, its action will be an upper bound for the true, minimal action.
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Deforming the curve so as to minimize the action (4.35) we reach a solution. The arrival
time may become a variational parameter itself.

If the lowest action �min associated with any trajectory joining any two points in the
attractor and repellor is finite, we know that the system will necessarily need a time at least
τ ∼ e�min/ε to explore them. This can be simply seen by looking at the sum over paths (4.32)
as a partition function in a space of trajectories at inverse temperature ε, with �min its
‘ground state energy’.

Clearly, for the Gallavotti–Cohen theorem to apply, a necessary condition is that
�min = 0. For this to happen, attractor and repellor have to be interwoven so that just ad-
vancing from (qa, q̇a) along a zero-action trajectory satisfying (4.37) we reach a point that
is as close as we wish to some (qr , q̇r ), providing a zero-action ‘bridge’. However, the con-
dition �min = 0 only implies that the time for bridging attractor and repellor grows in a
subexponential — for example power law τ ∼ ε−μ — way, and is not necessarily finite as
ε → 0. One can imagine such a situation arising in a case in which attractor and repellor
have closures of dimension d1, but these intersect in a manifold of dimension d2 < d1. With-
out noise a trajectory might have vanishing probability of leaving the attractor and entering
the repellor, since the time spent in the overlapping region would be negligible; the addition
of noise will coarsen both attractor, repellor and intersection by introducing a width, hence
making the passage more likely.

5 Instantons for the Lorentz Gas

We shall consider here a Lorentz gas [30], a system with a single thermostatted particle
under the action of an electric field as in Sect. 2, but with in addition obstacles where the
particle bounces, introducing chaos The Lagrangian (3.22) reads

L̃ = 1

4
(θ̇ + E sin θ)2 = pθ θ̇ −H,

H = E = 2pθ(pθ − E sin θ)

(5.39)

with E defined in (3.23) and

pθ = 1

2
(θ̇ + E sin θ). (5.40)

The motion is punctuated by bounces on the wall. Between bounces, the trajectories sat-
isfy (3.23):

dθ = ±
√

4E + E2 sin2 θdt,

dx = cos θdt = cos θ

θ̇
dθ = ± cos θ

√
E2 sin2 θ + 4E

dθ,

dy = sin θdt = sin θ

θ̇
dθ = ± sin θ

√
E2 sin2 θ + 4E

dθ

(5.41)

which yields the parametric equations for the trajectory segment. One also has that

ṗθ = −2E cos θpθ = 2Epθ ẋ,

pθ (t) = pθ(to)e
2Ex|to

(5.42)
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where to is the initial time of the segment. The action for the trajectory segment reads:

� =
∫

dtp2
θ (t) = p2

θ (to)

∫
dte4Ex|to (5.43)

where x|to = ∫
dtẋ is the total distance along x, without subtracting the windings if the space

is periodic. It is positive if the particle moved downhill, and negative if it moves contrary to
the force.

Next, we need to consider bounces. Because we are solving the instanton dynamics,
rather than the original one, we could wonder what happens during a bounce. To make this
point clear, in the Appendix we compute a bounce by considering the wall as a limit of
continuous potentials. The result is that: (i) the reflection law holds, (ii) the contribution of
the bounce to the action vanishes in the hard wall limit, and (iii) pθ does not change from
just before to just after the bounce. Instead, E is not conserved in bounces, since:

E|after
before = 2pθE sin θ |after

before (5.44)

which is nonzero in general, except when pθ = 0.
Segments of trajectories belonging to the attractor and repellor of the original noiseless

dynamics have zero action and pθ(t) = E = 0: this is preserved by both trajectories and
bounces at all times (cf. (5.43) and (5.44)).

Trajectories have a starting point (x, y, θ, θ̇). Thanks to bounces, they move uphill and
downhill with respect to the field. Those that diffuse uphill have a smaller and smaller value
of pθ (see (5.43)). Furthermore, as pθ → 0 also E → 0 (although E can still increase some-
what in a bounce). Hence, a trajectory that had bounces allowing it to diffuse a long way
uphill becomes more and more closely a zero-action trajectory. Moreover, it is (or rather, it
shadows) a trajectory belonging to the repellor, since trajectories in the attractor move on
average downhill.

Suppose next that the starting point is a very small perturbation with pθ 	= 0 of a point
on the attractor. At the beginning the point will continue to move on average downhill.
However, this implies that the value of pθ grows exponentially (see (5.43)). In other words,
in the full dynamics with instantons, true attractor trajectories are unstable, a general fact
already mentioned in the previous sections. After some time, these trajectories will bounce
uphill and downhill. A few of these perturbations will diffuse a large amount uphill, and
as described above those will then be very close to the repellor. Hence, we have identified
the instantons interpolating between attractor and repellor as the (rare) trajectories that have
initial conditions close to the attractor and such that they keep diffusing on average upwards.
Their action is just the integral of the exponential of the uphill distance—a finite quantity.

As is typical with instantons, we need some sort of ‘shooting’ method to find those so-
lutions that actually end up in (or shadowing an orbit in) the repellor, otherwise a generic
solution will just evolve away. Secondly, we see that there are many of these solutions, and
not essentially one as in the case without obstacles.

6 Conclusions

We have recasted the problem of the deterministic Fluctuation Theorem as the vanishing
noise limit of stochastic one. Large-deviation functions in this limit need not coincide with
the zero-noise result, but one can always postulate that this is so in a practical case, thus
making an alternative Chaotic Hypothesis [15]: Considering the energy-conserving noise
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described above (and more generally noise respecting all the constants of motion of the
dynamics), a reversible many-particle system in a stationary state can be regarded as sto-
chastically stable for the purposes of computing probabilities over trajectories of macro-
scopic observables. The advantage of this formulation is that it is immediately testable in
a numerical (and perhaps also in a real) experiment.

We have argued here that if there are orbits with zero action that bridge attractor and
repellor, then the time needed in order that the Fluctuation Relation is satisfied is subex-
ponential in the noise ε ln τ → 0. We have, however, fallen short of proving the Gallavotti–
Cohen theorem for that case, since we argue that subexponential yet slowly divergent growth
of τ as ε → 0 is likely to arise, perhaps in systems in which the closures of attractor and
repellor are simultaneously dense in a manifold of low dimension. It seems an interesting
question to obtain estimates of passage times in terms of the noise (or temperature) in such
cases.

Acknowledgements I wish to thank G. Gallavotti, D. Ruelle and F. Zamponi for discussions and sugges-
tions.

Appendix Instantons and Hard Walls

To model the bounce, we consider walls as regions with a constant repulsive force (perpen-
dicular to the wall), and then take the limit of large force. We shall rotate the axis to a new
axes (x ′, y ′) so that outside the wall region the field is (E1,E2) and inside the wall region
the field is (Ew,0), Ew → ∞ as shown Fig. 4.

In general, in a region of fields (E1,E2) the Lagrangian reads

L = 1

4
(θ̇ + E1 sin θ − E2 cos θ)2,

H = 2pθ(pθ − E1 sin θ + E2 cos θ)

(7.45)

with

pθ = 1

2
(θ̇ + E1 sin θ − E2 cos θ). (7.46)

Fig. 4 Bounce trajectory in a
wall region
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The forces Ei jump when the particle crosses the wall. Across this jump, θ is continuous,
but θ̇ jumps. To calculate this, we write the equations of motion:

2
d

dt
(θ̇ + E1 sin θ − E2 cos θ) − 2(θ̇ + E1 sin θ − E2 cos θ)(E1 cos θ + E2 sin θ) = 0 (7.47)

which implies that in regions of constant fields:

d

dt
ln(θ̇ + E1 sin θ − E2 cos θ) = 2(E1ẋ + E2ẏ),

ln |θ̇ + E1 sin θ − E2 cos θ |to = 2(E1x + E2y)|to = 2x • E|to.
(7.48)

On entering the wall region, (7.47) implies that

pθ(t) = 1

2
(θ̇ + E1 sin θ − E2 cos θ) (7.49)

is continuous across discontinuities of the potential. Instead, the numerical value of H = E
jumps when the trajectory bounces, except if pθ = 0.

Within the wall region:

L = 1

4
(θ̇ − Ew sin θ)2. (7.50)

The conserved quantity is:

E = θ̇2 − E2
w sin2 θ (7.51)

and we have:

θ̇ = ±
√

E2
w sin2 θ + 4E . (7.52)

This is shown in Fig. 5, and it is clear that the reflection law will hold, since the trajectory
inside the wall region is symmetric. In terms of the coordinates normal and parallel to the

Fig. 5 The angle evolves in a
potential ∼ −E sin2 θ , entrance
and exit angle a symmetrically
disposed, since the distance along
x moved is the integral of
cos θ(t), which is exactly zero if
π/2 − θin = θout − π/2



1320 J Stat Phys (2007) 128: 1307–1320

wall:

dx ′ = cos θdt = cos θ

θ̇
dθ = cos θ

√
E2

w sin2 θ + 4E
dθ,

dy ′ = sin θdt = sin θ

θ̇
dθ = sin θ

√
E2

w sin2 θ + 4E
dθ.

(7.53)

We have ẋ ′ = cos θ and (7.48) reads:

(θ̇ − Ew sin θ)t = (θ̇ − Ew sin θ)t=0e
−2Ewx′

. (7.54)

It is then clear that, in the limit of strong Ew , the time spent in the wall region tends to

zero, while the integrand in the action e4Ewx′
is itself of order one (since the penetration

x ′ ∼ O(1/Ew)). We conclude that the action during the bounce tends to zero as |Ew| → ∞.
Note that the argument is valid for quite general bounces.
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